
 1

Optimizing Spacecraft Design –

© 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE. In Proc. of the 2003 IEEE Aerospace Conference, Big Sky, MT, Mar. 2003, pp. 8-3681 – 8-3690.

Optimization Engine Development: Progress and Plans

Steven L. Cornford, Martin S. Feather, Julia R. Dunphy, Jose Salcedo
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr
Pasadena, CA 91109

818-354-1701, 818-354-1194, 818-393-5365, 818-393-0995
{Steven.L.Cornford,, Martin.S.Feather, Julia.R.Dunphy, Jose.Salcedo}@Jpl.Nasa.Gov

Tim Menzies

Lane Department of Computer Science & Electrical Engineering,
West Virginia University

PO Box 6109, Morgantown, WV 26506-6109
304-367-8263

tim@menzies.com

Abstract— At JPL and NASA, a process has been
developed to perform life cycle risk management. This
process requires users to identify: goals and objectives to be
achieved (and their relative priorities), the various risks to
achieving those goals and objectives, and options for risk
mitigation (prevention, detection ahead of time, and
alleviation). Risks are broadly defined to include the risk of
failing to design a system with adequate performance,
compatibility and robustness in addition to more traditional
implementation and operational risks. The options for
mitigating these different kinds of risks can include
architectural and design choices, technology plans and
technology back-up options, test-bed and simulation
options, engineering models and hardware/software
development techniques and other more traditional risk
reduction techniques.

Each of these risk mitigations has resource costs associated
with them. The sum of all these mitigations is almost always
unaffordable. Furthermore, there may be a variety of other
constraints (mass, power, funding profile, leveraged
programs, etc.) that further constrain acceptable selections.
The challenge is therefore to emerge with an “optimal”
selection of mitigations that makes best use of available
resources to reduce risk to the fullest extent possible.

For non-trivial design spaces, the search space of possible
selections is huge. This precludes exhaustive search for the
optimum, and therefore necessitates the adoption of
heuristic search techniques. At JPL, we have explored
application of several heuristic techniques for searching for,
and refining, collections of risk mitigations, notably: genetic
algorithms, simulated annealing, and machine learning. The
results of research and pilot applications of these techniques
for finding best combinations of life cycle risk management
solutions are discussed.

 TABLE OF CONTENTS

...
1. DDP’S RISK MANAGEMENT PROCESS ..1
2. OPTIMIZATION NEEDS2
3. GENETIC ALGORITHM EXPERIMENTS ...3
4. MACHINE LEARNING EXPERIMENTS......4
5. SIMULATED ANNEALING EXPERIMENTS 7
6. STATUS AND FUTURE WORK8
ACKNOWLEDGEMENTS8
REFERENCES ...9
BIOGRAPHIES ..9

 1. DDP’S RISK MANAGEMENT PROCESS-
This section summarizes the risk management process that
we have developed and applied at JPL and NASA.

Defect Detection and Prevention (DDP) is the risk
management process that we have developed and applied to
risk assessment, risk mitigation planning, and lifecycle risk
management [1]. The primary purpose of DDP is to help
expert users plan the design and development of complex
systems. Risk management is central to their successful
development, deployment and operation. Custom tool
support [2] facilitates the practical application of the DDP
process.

DDP explicitly represents risks, the objectives that risks
threaten, and the mitigations available for risk reduction. By
linking these three concepts, DDP is able to represent and
reason about the cost-effectiveness of risk reduction

- Paper 1119

- 0-7803-7651-X/03/$17.00 © 2003 IEEE

alternatives. In more detail, the DDP representation
includes:
Objectives – the requirements, goals and objectives that the
system is to achieve. Each of them has a “weight”
representing its relative importance.
Risks – all the possible things that, should they occur,
would detract from attainment of the Objectives. It is
important to realize that in applying DDP, this category of
information is quite broad. For example, DDP uses Risks to
encompass design risks (failing to design a system with
adequate performance, compatibility and/or robustness) in
addition to more traditional implementation and operational
risks.
Mitigations – all the possible activities that, if they are
performed, will reduce risk. Again, DDP uses this category
of information very broadly. For example, DDP uses
Mitigations to encompass architectural and design choices,
technology plans and technology back-up options, test-bed
and simulation options, engineering models and
hardware/software development techniques in addition to
more traditional risk reduction techniques. Mitigations have
costs – the resources it takes to apply them. These might
include monetary, schedule, physical resources (e.g., mass,
power), facilities (e.g., test equipment), etc.
Impacts – each of these quantifies the extent to which a
risk, should it occur, detracts from the attainment of an
objective. Effects – each of these quantifies the extent to
which a mitigation, should it be applied, reduces a risk.

 2. OPTIMIZATION NEEDS
In the JPL and NASA setting, spacecraft systems are the
focus. We have applied DDP to help plan the development
of individual technologies (both hardware and software) for
use on spacecraft, and, in ongoing work, are using DDP to
help in the planning for an entire spacecraft.

The primary purpose of DDP is to assist users to cost-
effectively select risk mitigations. Each mitigation has
resource costs. The sum total cost of all these mitigations is
almost always unaffordable. Furthermore, there may be a
variety of other constraints (mass, power, funding profile,
leveraged programs, etc.) that further constrain acceptable

selections. The challenge is therefore to emerge with an
“optimal” selection of mitigations that makes best use of
available resources to reduce risk to the fullest extent
possible.

In these applications, objectives, risks and mitigations are
numerous, and highly interlinked, making optimization a
challenge. To convey the magnitude of this challenge, the
topology of the DDP information for a recently concluded
study of a packaging technology is shown in Figure 1. The
study gathered 50 Objectives, 31 Risks and 58 Mitigations.
In the figure, the Objectives are shown as small squares in
the row across the top, the Risks as small squares in the row
across the middle, and the Mitigations as small squares in
the row across the bottom are the Mitigations. The lines
connecting these indicate the presence of the Impacts
(between Risks and Objectives) and Effects (between
Mitigations and Risks). This is just the topology – there is
further quantitative information not apparent on this figure,
most importantly the strengths of these Impacts and Effects,
nor the relative weights of the Objectives.

For non-trivial DDP applications, the search space of
possible selections is huge. For example, in the application
whose data is pictured in Figure 1, there are 58 individual
mitigations, so the number of possible selections of such is
258 (approximately 1018). In other DDP applications,
numbers of mitigations have been comparable, or even
greater, with correspondingly larger search spaces. This
makes cost-effectively selecting mitigations a considerable
challenge. What is needed is the ability to automatically
optimize selection of Mitigations, as called for in [3].

In response, we have been investigating the use of heuristic
search techniques. These have the capacity to locate near-
optimal solutions in such huge search spaces. In the DDP
setting we have experimented with three different kinds of
heuristic search techniques: genetic algorithms, machine
learning, and simulated annealing. These are discussed in
detail in the sections that follow.

n

Figure 1 – The Linked Structure of Information in a Typical DDP Applicatio
2

= total amount of risk against each requirement:

= risk reduced by a selection of Mitigations:
Cost: $0

Cost: $175,000

Selecting mitigations
decreases risk and
increases cost

Cost: $600,000

… risk further reduced by a selection of additional Mitigations:

Mitigations must be selected with care – e.g., a just as costly, but
much less effective, selection of Mitigations:

Cost: $600,000

Optimization
challenge: pick
the Mitigations
to maximally
reduce risk
while remaining
in budget

= total amount of risk against each requirement:

= risk reduced by a selection of Mitigations:
Cost: $0

Cost: $175,000

Selecting mitigations
decreases risk and
increases cost

Cost: $600,000

… risk further reduced by a selection of additional Mitigations:

Mitigations must be selected with care – e.g., a just as costly, but
much less effective, selection of Mitigations:

Cost: $600,000

Optimization
challenge: pick
the Mitigations
to maximally
reduce risk
while remaining
in budget

3. G
Our i
to se
cost c

The c
popul
allow
soluti
in po
“muta

In a D
a vec
applic
select
popul
calcu
impac
accou
by th
the G

To ap
mutat

Figure 2 – The optimization challenge: judiciously select mitigations to cost-effectively reduce risk
3

ENETIC ALGORITHM EXPERIMENTS

nitial experiments were with Genetic Algorithms used
arch for DDP risk-minimizing solutions for a given
eiling.

ore idea of Genetic Algorithms is to work with a
ation of candidate solutions. This population is
ed to evolve in a series of steps. In each step, the better
ons, and variations of them, are preferentially favored
pulating the next generation. Various forms of
tions” are used to generate those variations.

DP application, a candidate solution is represented as
tor of Booleans, one for each of the Mitigations of that
ation. The Boolean is true if the Mitigation is to be
ed for application in the solution, false otherwise. A
ation of solutions is thus a set of such vectors. DDP
lates the risk for a given solution by summing the
t of the Risks on the weighted Objectives, taking into
nt the risk-reducing effects of the Mitigations selected
at solution. This risk measure is used as the score for
enetic Algorithm (where lower risk is better).

ply Genetic Algorithms, we devised a way to generate
ions from a given solution such that those solutions

would each fall within the prescribed cost ceiling. In
generating the next generation of candidates from the
current generation, the better-scoring solutions of the
current generation were allowed to contribute more such
(cost-capped) mutations to the next generation. Over a
series of generations, the search would tend to discover
better solutions, i.e., selections of Mitigations whose total
costs remained below the cost ceiling, and whose risk-
reducing effects were superior.

The experiments with this approach demonstrated the
following strengths and weaknesses:

Genetic Algorithm: Application Strengths

Rapid Progress – the algorithm made rapid progress at
finding much improved solutions. This held true for quite
large DDP datasets. We observed this in experimenting
extensively with data from a relatively large DDP
application, one that had 99 Mitigations from which to
select.

We attribute this performance to the work we put into
generating mutations (of solutions in the current generation)
that remained within the cost ceiling. This considerably
reduced the search space to just those Mitigation selections

 4

that exhibited the required cost characteristic.

This effect became even more pronounced when we took
into account additional constraints on costing. These
constraints arose in the context of planning risk mitigation
for a long-duration project. The project not only had a
constraint on the sum total cost for the project as a whole,
but also a constraint on the sum total cost within each time
phase (financial year). The additional constraints that this
placed on solutions further reduced the search space. We
extended our mutation algorithm accordingly, so that it
would generate those and only solutions that met all of these
costs constraints. As a result, the performance of the
Genetic Algorithm search was improved.

Multiple Solutions – a desirable feature of the Genetic
Algorithm approach is that in each step it calculates multiple
candidate solutions. This means that users can examine the
better scoring solutions from the final generation, and pick
from among them. When there are several solutions that
have close cost and risk scores, minimizing the risk is not
necessarily the preferred way to narrow the choice to just
one solution. Instead, users often wish to take other factors
into account to guide their selection.

Genetic Algorithm: Application Weaknesses

Optimize for Benefit (Least Risk) Only – the way we
approached the use of Genetic Algorithms would not work
to optimize for cost minimization at a given level of risk.
This is because the calculation of risk in a DDP model is
much more convoluted than the calculation of cost. As a
consequence, that generation of mutations to each fall
below a risk ceiling is far harder than the generation of
mutations to each fall below a cost ceiling.

An alternative would be to allow mutation to generate
solutions unconstrained by a benefit ceiling. During the
population of the next generation from the current one the
risk measure would be taken into account – those current
solutions that exceed the benefit ceiling would be scored as
worse than those solutions that are within the benefit
ceiling, regardless of cost. Unfortunately, this would detract
from the rapid progress quality that our cost-capped
approach exhibited.

Hard to Maintain as DDP Cost Model is Elaborated – the
way we approached cost-capped generation of mutations
worked well with the mainstream DDP cost model.
However, we have subsequently elaborated that cost model
to better represent cost phenomena that arise in practice.
Elaborating our mutation generation algorithm accordingly
would be troublesome.

The key such elaboration of the DDP Cost Model is to
handle repair costs – these are incurred by DDP mitigations
that detect (rather than prevent or alleviate) risks. Their
benefit comes from exposing the presence of risks, thus

allowing for corrective measures to be taken prior to actual
use of the system. The net result is that the operational
system (in our case, the spacecraft post-launch) is more
reliable. However, two kinds of costs are incurred: the cost
of performing the detection-style mitigation, and the cost of
repairing the problems (if any) that it detects. The
calculation of the expected repair cost depends on when it is
done (repair costs typically escalate later in the life-cycle)
and how likely it is that the risk will be present at the time
the detection is performed. This likelihood in turn depends
on what other mitigations have preceded it. Unfortunately,
this intertwining of the cost calculation with the risk
calculation renders generation of cost-capped mitigations a
challenge, in much the way that generating risk-capped
mitigations would be.

Prior to this elaboration of the DDP model we approximated
the situation by ascribing appropriately high costs to the
mitigations that we knew to be late-lifecycle detections.
This approximation suffices in many of the decision-making
challenges we tackle with DDP. However, the elaborated
cost model’s more accurate representation of cost factors is
desirable to have. For example, we have used it in example
calculations of cost-benefit measures for alternative
software quality practices – see [4] for details.

Tuning Genetic Algorithms’ Search – Genetic Algorithms
often require tuning to get efficient search performance.
While they offer a plethora of parameters for such tuning
(e.g., to control relative rates of various kinds of mutations),
we do not want to have to burden the DDP user with these
choices. To date we have not performed experiments on a
broad enough range of DDP applications to say how much
of a problem this will be for us. We would have to address
this issue were we to incorporate a Genetic Algorithm
optimizer as part of DDP.
Can’t Distinguish Critical from Non-Critical Decisions –
the recommended selection of mitigations that is the end
product of a Genetic Algorithm run on a DDP application
contains no indication of the relative importance of
individual decisions. Lacking this information, users do not
know which of those decisions they can safely modify
without severely compromising the quality of the solution.
Of course, they can use the DDP tool to explore, making
adjustments and studying the recalculated cost and benefit
measures, but this is a tedious process at best.

4. MACHINE LEARNING EXPERIMENTS

Classical machine learning (e.g. C4.5 [5]) can be applied to
learn from examples the implications between sets of
decisions and results. For a model such as DDP, individual
decisions are binary (which Mitigations to apply), and
results are measures of cost and benefit (reduction of Risk,
or equivalently, attainment of Requirements). However, as
pairs, triples, etc., of individual decisions are considered,
the numbers increase, and some of summarization is
required. Our co-author Tim Menzies has pioneered the use

of an approach that combines learning and summarization
into one tool, his “TAR2” system. We used in experiments
on DDP applications. The approach and results are
explained at length in [6]. Briefly, the way we combined
DDP and TAR2 is sketched in Figure 3.

DDP is used to generate a large number of examples, where
in each example the Mitigations to apply are chosen at
random. A given example’s information comprises the
choices of selected Mitigations, and a score reflecting the
net value of the cost and benefit (requirements attainment)
of those selections. The generated set of such examples is
passed over to TAR2. From the examples, TAR2
determines which are the most critical decisions, and how to
make them so as to maximize the score. TAR2 actually
determines several alternative such decisions sets, not just
one. This is an opportune point for the human experts to be
involved – they can look at the alternative decision sets, and
select the one they would most prefer. Having made such a

selection, the information is passed
cycle repeats. In this second and s
decisions made in the prior cycles co
in its generation of the next set of ex
continued until convergence (ei
decisions have been made, or there i
the decisions that remain that there
further).

This approach was piloted on data
application. The application had 99
to select. Five cycles of the DDP-T
above were sufficient to identify
decisions (some of these were
Mitigations to perform, the others o
not perform). Making just these 33
other 66 to be made at random) wa
the resulting solutions to a very
search space in the optimal co
graphically in Figure 4. Each black

of the randomly generated examples (selection of
Mitigations). Its placement is determined by its DDP-
computed cost (placement on horizontal axis), and benefit,
i.e., attainment of objectives (placement on vertical axis).
The dispersal of these black points indicates that when
Mitigations are chosen at random, there is a large variation
in the quality of their solutions. The compact white area is
comprised of a large number of closely spaced white points,
each corresponding to one of the solutions whose 33 most
critical decisions were constrained as directed by TAR2.
The remaining variation within this area is due to the
random choice from the remaining 66 less critical decisions.

From this figure it is clear that the iterative use of TAR2 has
located near-optimal solutions (those towards the upper left
corner). In each of the TAR2-DDP iterations the additional
decisions made by TAR2 nudge the search focus towards
the optimal area, allowing it to explore that area much more
effectively than would have been possible with random

DDP TAR2
(Menzies)

execute to generate many examples

Each example: value & decisions

1. P = Yes
2. Q = Yes
3. R = No

Alternative
sets of
critical
decisions

Human Experts

critical
decision
selection

iterative
cycle

1. X = No
2. Y = Yes
3. Z = Yes

or

Execution/Summarization/Decision Cycle

DDP TAR2
(Menzies)

execute to generate many examples

Each example: value & decisions

1. P = Yes
2. Q = Yes
3. R = No

Alternative
sets of
critical
decisions

Human Experts

critical
decision
selection

iterative
cycle

1. X = No
2. Y = Yes
3. Z = Yes

or

Execution/Summarization/Decision Cycle

2
Figure 3 – The Combination of DDP and TAR

 back to DDP, and the
ubsequence cycles, the
nstraint DDP’s choices
amples. This process is

ther all the possible
s so little variation from
 is no need to continue

5

from a large-scale DDP
Mitigations from which
AR2 iteration described
 the 33 most critical
 decisions of which
f which Mitigations to
 decisions (leaving the
s sufficient to constrain
compact region of the
rner. This is shown

point on the chart is one

search alone.

TAR2 Machine Learning: Application Strengths

Identifies the Most Critical Decisions – the use of TAR2
identifies which of the many decision are the most critical.
In DDP terms, each decision is whether or not to apply a
Mitigation. Those to be applied are the Mitigations that
contribute the most towards an overall cost-effective
solution, while those to not be applied are the Mitigations
that detract the most from an overall cost-effective solution.
The remaining Mitigations make little net difference. Note
that the interconnectedness typical of DDP applications
(recall Figure 1) makes identification of these decisions far
from easy. For example, a Mitigation may appear to be cost-
effective when considered in isolation (because it reduces
many risks and costs relatively little), yet, in the context of
the other Mitigations, be redundant (because Mitigations
that must be applied to reduce other risks happen to also
reduce the risks that this promising Mitigation addresses).

Multiple Solutions – at each application of TAR2 in the
iterative DDP-TAR2 cycle, TAR2 proposes several
alternative sets of decisions. This gives users the
opportunity to select from among them, allowing them to
inject their preferences into the search process. Coupled
with the fact that TAR2 identifies the most critical decisions
first, this means that users’ attention and decision making is
being applied where it matters the most. This is a very
effective blend of automated search and expert human
guidance.

Robust Interface between TAR2 Search and DDP Risk
Model – the interface between TAR2 and DDP is very
straightforward, meaning that as DDP evolves, little or no
change needs to be made to TAR2. All that TAR2 needs is a
set of examples, generated and scored by DDP. In return,
TAR2 provides back to DDP a set of decisions. The
elaboration of the DDP cost model we discussed earlier
requires no change to TAR2 – it continues to operate as
before, relying upon DDP to correctly score each of the
examples it generates based on the internal-to-DDP model
of cost and benefit.

Essentially, TAR2 is uncoupled from the innards of the
DDP cost/benefit model. This decoupling has permitted
TAR2 to be applied in a number of widely differing
domains, including the COCOMO risk model [7] and CMM
level 2 [8].

The discussion of why TAR2 succeeds in such widely
differing applications is beyond the scope of this paper – the
interested reader is referred to [9] and [10] for further
details.

Optimize for Cost and/or Benefit (Least Risk) – the TAR2
form of optimization can be applied to search for benefit
maximization (maximal attainment of Objectives, or
equivalently, minimal Risk) within a given cost ceiling, cost
minimization within a given Risk ceiling, or a weighted
combination of the two. The key to this is the use of the
DDP-computed score for each example passed over from
DDP to TAR2. The calculation of that score embodies the
optimization goal, allowing TAR2 to search for solutions
that achieve that goal, but decoupling it from the details of
the DDP model calculations.

TAR2 Machine Learning: Application Weaknesses

Slow Progress – in each iteration TAR2 requires of DDP
the generation and scoring of the large number of examples;
this is a slow process. The bottleneck lies in the DDP side,
where the risk model itself is relatively complex. Requiring
that tens of thousands of examples each be scored is time
consuming. The multiple cycles required by the DDP-TAR2
connection exacerbates this problem.

Manual control of TAR2 required – in the version of TAR2
used in the pilot study, some manual control of TAR2 was

0

50

100

150

200

250

300

200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000

Cost

B
en

ef
it

be
ne

fi
t

cost

GOOD!

BAD!

high cost,
low benefit

low cost, low
benefit

high cost,
high benefit

low cost,
high benefit

Figure 4 – TAR2’s Search Results on a DDP Application
6

required in each cycle. This was relatively easy to learn how
to do – Tim Menzies taught one of the DDP team, so it did
not require the intimate involvement of the TAR2 creator to
apply the TAR2 tool. Nevertheless, this would be an
impediment to the incorporation of TAR2 as the optimizer
part of DDP.

5. SIMULATED ANNEALING EXPERIMENTS

Our final category of heuristic search experiments used
Simulated Annealing.

The core idea of Simulated Annealing is a search that favors
improving the best solutions found so far. However, in
order to better explore the space, it allows the search to take
retrograde steps (to worse solutions). Tolerance for such
retrograde steps is gradually decreased as the search
progresses. The net result is rapid convergence towards
near-optimal solutions.

Simulated Annealing requires the ability to score a solution,
and the ability to step from the current solution to a
candidate next solution. Recall that in a DDP application, a
candidate solution is represented as a vector of Booleans,
one for each of the Mitigations of that application. The
Boolean is true if the Mitigation is to be selected for
application in the solution, false otherwise. Thus to apply
Simulated Annealing to DDP, the score of a solution is
derived from the DDP-calculated cost and benefit. The

goals of the optimization determine how this score is
calculated. For example, if the goal is to select Mitigations
that lead to maximal attainment of Objectives while
remaining within a given cost ceiling, the score for a
solution would be higher the greater the attainment of
Objectives, as long as the cost was below the cost ceiling. A
solution whose cost is above the cost ceiling would be
scored very low. The ability to step from the current
solution to a candidate next solution is simply the random
modification of a percentage of the current solution’s vector
of Booleans representing “selectedness” of Mitigations.

Figure 5 shows a run of the Simulated Annealing algorithm
on an actual DDP dataset. The cost ceiling has been set at
$1,000,000, indicated by the position of the vertical line.
Points to the right of the line exceed the cost ceiling. The
run is able to locate solutions (Mitigation selections) that
achieve close to the maximal possible benefit (attainment of
Objectives) while remaining below the cost ceiling. During
the course of the search the effect of simulated annealing is
to decrease tolerance for retrograde steps (the analogy with
the physical phenomenon of simulated annealing is of the
temperature “cooling”). Note that the plot is of all the
candidate solutions examined by the search, many of which
exceed the cost ceiling. Their points are plotted, but they
generally do not become the current working candidate
during search. As the search progresses, we keep track of
the best solutions found to date. Once a search has
completed, the user may view the selections of Mitigations

that the search found.

Simulated Annealing
search in the vicinity of
the $1000000 cost limit

Optimum
attainable
benefit for
$1000000

This and other experiments with
Simulated Annealing demonstrated the
following strengths and weaknesses:

Simulated Annealing: Application
Strengths

Rapid Progress – the algorithm made
rapid progress at finding much
improved solutions. We attribute this to
the fundamental strength of Simulate
Annealing style search. Because the
search deals with only one solution at a
time, it is expedient to explore a large
number of steps. The example in Figure
4 was a 10,000-step search, which took
approximately 20 minutes running on a
1.8 MHz laptop. The bulk of the time is
spent in DDP’s evaluation the cost-
benefit score for each candidate
solution.

 Robust Interface between Simulated
Annealing Search and DDP Risk Model

Figure 5 – Simulated Annealing on a DDP Application

 7

 8

– the interface between Simulated Annealing and DDP is
very straightforward. As was the case with the Machine
Learning experiments, the reason for this is that the search
is uncoupled from the innards of the DDP cost/benefit
model.

Optimize for Cost and/or Benefit (Least Risk) – the
Simulated Annealing form of optimization can be applied to
search for benefit maximization (maximal attainment of
Objectives, or equivalently, minimal Risk) within a given
cost ceiling, cost minimization within a given Risk ceiling,
or a weighted combination of the two. As was the case with
the Machine Learning experiments, the reason for this is
that the search is uncoupled from the innards of the DDP
cost/benefit model.

Automatic Search – the Simulated Annealing search
requires no user intervention once it is underway. Prior to
starting the search the user must indicate the optimization
goals (e.g., the cost ceiling for a cost-constrained
optimization), and select the number of steps of search, but
there is no need to further tune the search process, or
intervene as it proceeds.

Simulated Annealing: Application Weaknesses

Can’t Distinguish Critical from Non-Critical Decisions –
the recommended selection of mitigations that is the end
product of a Simulated Annealing run on a DDP application
contains no indication of the relative importance of
individual decisions. This is the same weakness as the
Genetic Algorithm application approach.

Lack of Multiple Solutions – the Simulated Annealing
search works with a single candidate solution. Thus the end
result of a search is the best solution found to date, not a set
of multiple leading solutions. We have partially addressed
this weakness by adjusting our Simulated Annealing
algorithm to keep track of the N best solutions to date, the
value of N set in advance by the user. However, when there
are trivial variants of the best solution, this solution is prone
to being swamped by those small variants, and loses track
of other solutions that do not score quite so well but are
significantly different alternatives to risk reduction.

 6. STATUS AND FUTURE WORK
The current status of our work is that the Simulated
Annealing based search has become a part of the standard
DDP distribution. It has already been used to good effect in
a recently conducted DDP study of an advanced packaging
technology.

We have augmented our Simulated Annealing search
algorithm to take into account user defined constraints in
addition to the cost ceiling (or risk ceiling) goals already
discussed. An example is that two Mitigations may be
mutually exclusive. In principle it would be possible to

encode this information directly in the cost scoring function
(making any solution that applies both of them score as
infinite cost), but this is not an intuitive way to specify such
constraints. Instead, the DDP interface proffers a set of
typical constraint templates, that users can instantiate as
needed to the study at hand. DDP then automatically folds
these constraints into the scoring algorithm, so that
candidate solutions violating one or more such constraints
score poorly. For small numbers of such constraints, this
solution appears to work well.

In the future we seek to combine the advantages exhibited
by each of the heuristic search techniques that we have
explored. We are particularly interested in combining the
speed of the Simulated Annealing search with the ability of
the TAR2 Machine Learning to identify which are the most
critical decisions. We also foresee the need to handle more
complex sets of user-defined constraints. Our desire is to be
able to automatically fold these into the search generation
phase (e.g., for Simulated Annealing, the step to the next
candidate solution). This would achieve the effect of a more
rapid search because it would not stray into infeasible
solution regions. We are also interested in using search to
reveal the overall solution space, and “interesting” options
therein. For example, the user might have asked to optimize
for benefit (maximal Objectives attainment) within a given
cost ceiling, but if the search process can recognize that for
only a small increment in cost, vastly superior benefits are
attainable, it would be desirable to recognize this, and report
it to the user.

Our experiments show that heuristic search techniques can
work well on real DDP application datasets. The positive
reaction to the use of Simulated Annealing based search
within a real study suggests that these techniques have a
valuable role to play. That we are seeing benefit from our
relatively preliminary use of Simulated Annealing based
search is very encouraging.

ACKNOWLEDGEMENTS

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government
or the Jet Propulsion Laboratory, California Institute of
Technology.

The elements of this research have been conducted within
the Code Q funded Failure Detection and Prevention
Program (FDPP), the Code Q funded Advanced Risk
Reduction Task (ARRT) managed at the NASA IV&V
facility, and the Code R funded Engineering for Complex
Systems Program.

Discussions with JPLers Ken Hicks, Kelly Moran, Steve
Prusha and Burton Sigal (JPL) have been most useful in
helping us formulate our ideas and bring them to fruition.

 REFERENCES
[1] S.L. Cornford, M.S. Feather and K.A. Hicks: “DDP – A
tool for life-cycle risk management”, Proceedings, IEEE
Aerospace Conference, Big Sky, Montana, Mar 2001, pp.
441-451.
[2] M.S. Feather, S.L. Cornford and M. Gibbel: “Scalable
Mechanisms for Requirements Interaction Management”,
Proceedings 4th IEEE International Conference on
Requirements Engineering, Schaumburg, Illinois, 19-23 Jun
2000, IEEE Computer Society, pp 119-129.
[3] S.L. Cornford, J. Dunphy and M.S. Feather:
“Optimizing the Design of end-to-end Spacecraft Systems
using failure mode as a currency”, IEEE Aerospace
Conference, Big Sky, Montana, 2002.
[4] M.S. Feather, B. Sigal, S.L. Cornford & P. Hutchinson:
“Incorporating Cost-Benefit Analyses into Software
Assurance Planning”, Proceedings, 26th IEEE/NASA
Software Engineering Workshop, Greenbelt, Maryland
November 27-29, 2001.

 9

[5] R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufman, 1992.
[6] M.S. Feather, M.S. & T. Menzies: “Converging on the
Optimal Attainment of Goals”, Proceedings of the IEEE
Joint International Conference on Requirements
Engineering, Essen, Germany, Sept. 2002, pp. 263-270.
[7] T.J. Menzies and E. Sinsel: “Practical Large Scale
What-if Queries: Case Studies with Software Risk
Assessment”, Proceedings 15th IEEE International
Conference on Automated Software Engineering, Grenoble,
France, Sept 2000, pp 165-173.
[8] T. Menzies and J.D. Kiper: “Better reasoning about
software engineering activities”, Proceedings 16th
International Conference on Automated Software
Engineering, San Diego, California, Nov 2001, pp 391-394.
[9] T. Menzies, S. Easterbrook, B. Nuseibeh and S. Waugh:
“An Empirical Investigation of Multiple Viewpoint
Reasoning in Requirements Engineering”, Proceedings 4th
IEEE International Symposium on Requirements
Engineering, 1999.
[10] T. Menzies and H. Singh: “Many Maybes Mean
(Mostly) the Same Thing”, 2nd International Workshop on
Soft Computing applied to Software Engineering
(Netherlands), Feb. 2001.

BIOGRAPHIES
Steven Cornford is a Senior Engineer in the Strategic
Systems Technology Program Office at NASA’s Jet
Propulsion Laboratory. He graduated from UC Berkeley
with undergraduate degrees in Mathematics and Physics
and received his doctorate in Physics from Texas A&M
University in 1992. Since coming to JPL he focused his

early efforts at JPL on
establishing a quantitative
basis for environmental test
program selection and
implementation. As Payload
Reliability Assurance
Program Element Manager,
this evolved into establishing
a quantitative basis for
evaluating the effectiveness of overall reliability and test
programs as well as performing residual risk assessments
of new technologies. This has resulted in the Defect
Detection and Prevention (DDP) process is the motivation
for this paper. He received the NASA Exceptional Service
Medal in 1997 for his efforts to date. He has been an
instrument system engineer, a test-bed Cognizant Engineer
and is currently involved with improving JPL’s technology
infusion processes as well as the Principal Investigator for
the development and implementation of the DDP software
tool. Steve is the one in the middle of the picture.

Martin Feather is a
Principal in the Software
Quality Assurance group at
JPL. He works on developing
research ideas and maturing
them into practice, with
particular interests in the
areas of software validation
(analysis, test automation,
V&V techniques) and of early phase requirements
engineering and risk management. He obtained his BA and
MA degrees in mathematics and computer science from
Cambridge University, England, and his PhD degree in
artificial intelligence from the University of Edinburgh,
Scotland. Prior to joining JPL, Dr. Feather worked on NSF
and DARPA funded research while at the University of
Southern California's Information Sciences Institute. For
further details, see http://eis.jpl.nasa.gov/~mfeather

Julia Dunphy received her
Master’s and Bachelor’s degrees
in Physics and Mathematics
from Cambridge University, UK,
(’63) and her doctorate in
Theoretical Physics from
Stanford in ‘67. After a career
in magnetic recording research
in the 70s, she switched to
software development and was a

cofounder of a small company which provided development
software for the then infant microcomputing industry. She
now works as a contractor to JPL in the areas of design
research and network computing. Her interests include the
field of collaborative engineering design infrastructures and
automatic source code generation. She holds several
patents and has published over two dozen papers in various
areas, such as magnetic recording, error-correction coding,

and control of robotic vehicles (for the Mars Pathfinder
Rover).

Jose Salcedo is a Chief
Software Engineer working in
the Network Technology
Development group at JPL. He
obtained his BA degree in
physics from Occidental
College and MS degree in
Computer Engineer from USC.

Tim Menzies is a
cognitive scientist
exploring how quirks in
human cognition effect
the process of software
and knowledge
engineering. He holds
a Ph.D. in artificial
intelligence (1995), a
masters of cognitive
science (1988) and a
computer science
undergrad degree
(1985), all from the
University of New
South Wales, Sydney,
Australia. Currently, he
leads the software
assurance research at NASA's Independent Verification and
Validation (IV&V) Facility. Prior to working with NASA, Dr.
Menzies has worked with commercial organizations on
object-oriented systems and expert systems. For further
details, see http://tim.menzies.com

 10

